
m01 – Sorting m01fsc

nag search vector (m01fsc)

1. Purpose

nag search vector (m01fsc) searches a vector of arbitrary type data objects for the first or last
match to a given value.

2. Specification

#include <nag.h>
#include <nag_stddef.h>
#include <nagm01.h>

Boolean nag_search_vector(Pointer key, Pointer vec, size_t n,
ptrdiff_t stride, Integer (*compare)(const Pointer, const Pointer),
Nag_SortOrder order, Nag_SearchMatch final, Pointer *match, NagError *fail)

3. Description

nag search vector searches a sorted vector of n arbitrary type data objects, which are stored in the
elements of an array at intervals of length stride. vec must have previously been sorted into the
specified order.

The function searches for the first or last match depending on the value of final. It returns TRUE
if an exact match is found and match is set to point at that object. If there is no exact match then
FALSE is returned and match is set to point to either the next later element, if final is equal to
Nag First, or the next earlier element, if final is Nag Last.

4. Parameters

key
Input: the object to search for.

vec[]
Input: the array of objects to be searched.

n
Input: the number n of objects to be searched.
Constraint: n ≥ 0.

stride
Input: the increment between data items in vec to be searched.

Note: if stride is positive, vec should point at the first data object; otherwise vec should point
at the last data object.

It should be noted that |stride| must be greater than or equal to size of (data objects), for
the search to be performed successfully. However, the code performs no check for violation
of this constraint.
Constraint: |stride| > 0.

compare
User-supplied function: this function compares two data objects. If its arguments are pointers
to a structure, this function must allow for the offset of the data field in the structure (if it
is not the first).
The function must return:

−1 if the first data field is less than the second,
0 if the first data field is equal to the second,
1 if the first data field is greater than the second.

order
Input: specifies whether the array will be sorted into ascending or descending order.
Constraint: order = Nag Ascending or Nag Descending.

[NP3275/5/pdf] 3.m01fsc.1

nag search vector NAG C Library Manual

final
Input: specifies whether to search for the first or last match. This also determines the pointer
returned if an exact match cannot be found.
Constraint: final = Nag First or Nag Last.

match
Output: if an exact match is found this is a pointer to a pointer to the matching data object.
If an exact match is not found this is set to point to the nearest object. If final is Nag First
this is the next later element, otherwise the next earlier element.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE INT ARG LT
On entry, n must not be less than 0: n = 〈value〉.

NE INT ARG GT
On entry, n must not be greater than 〈value〉: n = 〈value〉.
On entry, |stride| must not be greater than 〈value〉: stride = 〈value〉.

These parameters are limited to an implementation-dependent size which is printed in the
error message.

NE INT ARG EQ
On entry, stride must not be equal to 0: stride = 〈value〉.

NE BAD PARAM
On entry, parameter order had an illegal value.
On entry, parameter final had an illegal value.

6. Further Comments

The maximum time taken by the function is approximately proportional to log2 n.

7. See Also

nag quicksort (m01csc)
nag rank sort (m01dsc)
nag reorder vector (m01esc)
nag make indices (m01zac)

8. Example

The example program reads a key and a list of real numbers, which have been sorted into ascending
order. It then searches the list for the first number which matches the key.

8.1. Program Text

/* nag_search_vector(m01fsc) Example Program
*
* Copyright 1990 Numerical Algorithms Group.
*
* Mark 2 revised, 1992.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nag_stddef.h>
#include <nagm01.h>

#ifdef NAG_PROTO
static Integer compare(const Pointer a,const Pointer b)

3.m01fsc.2 [NP3275/5/pdf]

m01 – Sorting m01fsc

#else
static Integer compare(a,b)
Pointer a, b;

#endif
{
double x = *((double *)a);
double y = *((double *)b);
return (x<y ? -1 : (x==y ? 0 : 1));

}

main()
{
double key, vec[50];
size_t i, n;
Pointer match;

/* Skip heading in data file */
Vscanf("%*[^\n]");
Vprintf("m01fsc Example Program Results\n");
/* Read number of points and number to search for */
Vscanf("%d%lf", &n, &key);
if (n>=0)

{
for (i=0; i<n; ++i)
Vscanf("%lf",&vec[i]);

if (m01fsc((Pointer) &key, (Pointer) vec, n, (ptrdiff_t)(sizeof(double)),
compare, Nag_Ascending, Nag_First, &match, NAGERR_DEFAULT))

{
Vprintf("Exact match found: ");
Vprintf("First match index: %d\n", (double *) match-vec);

}
else
{
Vprintf("No exact match found: ");
if (match!=NULL)
Vprintf("Nag_First nearest match index = %d\n", (double *) match-vec

else
Vprintf("No match in the input array\n");

}
exit(EXIT_SUCCESS);

}
else

{
Vfprintf(stderr, "Data error: program terminated\n");
exit(EXIT_FAILURE);

}
}

8.2. Program Data

m01fsc Example Program Data
20
2.3
0.5 0.5 1.1 1.2 1.2 1.2 1.3 2.1 2.3 2.3
2.3 2.3 4.1 5.8 5.9 6.3 6.5 6.5 8.6 9.9

8.3. Program Results

m01fsc Example Program Results
Exact match found: First match index: 8

[NP3275/5/pdf] 3.m01fsc.3

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

